
Assessing and Exploiting
BigNum Vulnerabilities

Ralf-Philipp Weinmann
Director of Research - Comsecuris

<ralf@comsecuris.com>

PGP fingerprint: D244D6F2E79B529BF5548F39B27967D58C07C5B7
twitter: @esizkur

1

mailto:ralf@comsecuris.com

PARENTAL 
ADVISORY

Sparse class of bugs

2

Outline
• Motivation, introduction to BigNum libraries

• Historical bugs in libgcrypt, GMP and OpenSSL's BN

• CVE-2014-3570: a case study

• A common bug pattern

• Property-based bug hunting

• Using verification tools to find bugs

• Conclusions
3

Motivation: break crypto, maybe?
• Bug Attack paper (Biham, Carmeli, Shamir) [2008]:

• Related to fault attacks, but input triggers faulty computation

• Hypothetical bugs presented

• Work the other way round: investigate what can be done with bugs
that have occurred [and are patched]

• BN_sqr() bug in OpenSSL (patched in January 2015) was trigger
for research

• Bug attacks only investigated for leakage of private keys

• what about signature verification bypasses?  
[real problem for DSA if modular inverse routine ever returns zero]

4

Introduction to BigNum Arithmetic
• BigNum implementation: fundamental ingredient for real-

world asymmetric crypto

• Provide arithmetic (and other) operations on integers
bigger than single machine word: e.g. +, -, *, /, ab, gcd

• For crypto: Above operations modulo n

• Sometimes:
• specialised implementations, e.g. for BigNums of fixed

length (1024/2048 bits)
• assembly implementations
• constant-time implementations

5

Widely used implementations*
• Open source:

• OpenSSL’s BN
• libgcrypt (fork of GMP, used by GnuPG and GnuTLS)
• GMP (through bindings in scripting languages)
• libTomMath, used by libTomCrypt

• dropbear, miniTLS (embedded devices), wpa_supplicant
• in mbedTLS (name of PolarSSL after ARM bought it)
• java.math.BigInteger (Java)  

• Closed source:
• on Microsoft OSes: bcryptprimitives.dll
• on OS X: libcorecrypto.dylib
• embedded devices: many others

6

* for cryptographic primitives

GMP

• Ruby Bignum

• Python

• PyCrypto (approx. 40k downloads/daily)

• also popular for hand-rolled crypto: gmpy

• Haskell’s: Integer type is BigNum [integer-gmp]

• Ocaml: ZArith package (Module Z)

7

Anatomy of CVE-2014-3570

8

A B

(2nA + B)2 = (2nA)2 + 2n+1AB + B2

 ()2

Recapitulating high-school math:

Anatomy of CVE-2014-3570

9

/* c+=2*a*b for three word number c=(c2,c1,c0) */

#define mul_add_c2(a,b,c0,c1,c2) { \
 BN_ULONG ta=(a),tb=(b),t0; \
 t1 = BN_UMULT_HIGH(ta,tb); \
 t0 = ta * tb; \
 t2 = t1+t1; c2 += (t2<t1)?1:0; \
 t1 = t0+t0; t2 += (t1<t0)?1:0; \
 c0 += t1; t2 += (c0<t1)?1:0; \
 c1 += t2; c2 += (c1<t2)?1:0; \
 }

Anatomy of CVE-2014-3570

10

/* c+=2*a*b for three word number c=(c2,c1,c0) */

#define mul_add_c2(a,b,c0,c1,c2) { \
 BN_ULONG ta=(a),tb=(b),t0; \
 t1 = BN_UMULT_HIGH(ta,tb); \
 t0 = ta * tb; \
 t2 = t1+t1; c2 += (t2<t1)?1:0; \
 t1 = t0+t0; t2 += (t1<t0)?1:0; \
 c0 += t1; t2 += (c0<t1)?1:0; \
 c1 += t2; c2 += (c1<t2)?1:0; \
 }

CVE-2014-3570 summary

• Integer overflow or carry mispropagation bug,
depending on your view

• Was present in OpenSSL codebase for 10 years

• Same mistake in MIPS and x86_64 assembly
implementations

• Trigger probability of 2-64 for MIPS and 2-128 for x86_64

11

OpenSSL’s impact assessment (1/2)

• “The probability of BN_sqr producing an incorrect
result at random is very low: 1/2^64 on the single
affected 32-bit platform (MIPS) and 1/2^128 on
affected 64-bit platforms.”

• “On most platforms, RSA follows a different code path
and RSA operations are not affected at all. For the
remaining platforms (e.g. OpenSSL built without
assembly support), pre-existing countermeasures
thwart bug attacks.”

12

OpenSSL’s impact assessment (2/2)

• “Static ECDH is theoretically affected: it is possible to
construct elliptic curve points that would falsely
appear to be on the given curve. However, there is no
known computationally feasible way to construct such
points with low order, and so the security of static
ECDH private keys is believed to be unaffected.”

• “Other routines known to be theoretically affected are
modular exponentiation, primality testing, DSA, RSA
blinding, JPAKE and SRP. No exploits are known and
straightforward bug attacks fail - either the attacker
cannot control when the bug triggers, or no private
key material is involved.”

13

Counterargument
• Impact assessment is correct — as long as OpenSSL crypto

routines are used with OpenSSL BN

• Statement correct for 1.0.1j, but incorrect for 1.0.1e for instance
wrt to static ECDH (did not have optimized NISTP256 impl. back
then, point addition used BN_sqr via
ec_GFp_simple_field_sqr)

• Not correct when OpenSSL BN routines are used by third-party
crypto

• Example: Android’s java.math.BigInteger uses OpenSSL’s
BN

• Uses SpongyCastle, fork of Bouncy Castle  
[JCE provider => Java crypto implementation]

14

Bugs fixed in GMP 5.0.4
• Released February 10th, 2012, from ChangeLog:

• “Two bugs in multiplication code causing incorrect
computation with extremely low probability have been fixed.”

• “Two bugs in the gcd code have been fixed. They could
lead to incorrect results, but for uniformly distributed random
operands, the likelihood for that is infinitesimally small.
(There was also a third bug, but that was an incorrect
ASSERT, which furthermore was not enabled by default.)”

• “A bug affecting 32-bit PowerPC division has been fixed.
The bug caused miscomputation for certain divisors in the
range 2^32 ... 2^64-1 (about 1 in 2^30 of these)”  

15

GMP 5 mult bugs
• GMP uses different algorithms for BigNums of different sizes

• reason: asymptotically faster algorithms exist for larger
numbers, but higher constant

• Toom-Cook for “medium-sized” numbers Θ(n1.465)

• Uses polynomial multiplication and interpolation

• Bugs occur in interpolation (trigger non-trivial to construct)

• Crossover values for algorithm choice are highly arch
specific (e.g. 74x 64-bit limbs on 64-bit Core2Duo => 4736
bits*)

16

* Correction to presented slide deck which claimed 23  
 instead of 74 limbs!

The patch

17

MPN_DECR_U (r1 + spt + BIT_CORRECTION,  
 n3p1 - spt - BIT_CORRECTION, cy);
 
cy = mpn_sub_1 (r1 + spt + BIT_CORRECTION,  
 r1 + spt + BIT_CORRECTION,
 n3p1 - spt - BIT_CORRECTION, cy);

• “MPN_DECR_U does {ptr,size} -= n, […]
expecting no carry (or borrow) from
that”

• Carry mispropagation again!  
[operating on single limb instead of whole BigNum]

Bug pattern: carry mispropagation
• Cause of BN_sqr() bug(s) and GMP multiplication bugs
• Also observed in Ed25519 implementations

• TweetNaCl: http://www.skylable.com/blog/2014/05/tweetnacl-
carrybit-bug/

• NaCl: http://tweetnacl.cr.yp.to/tweetnacl-20140917.pdf:  
 
“For example, four implementations of the ed25519 signature
system have been publicly available and waiting for integration
into NaCl since 2011, but in total they consist of 5521 lines of C
code and 16184 lines of qhasm code. Partial audits have
revealed a bug in this software (r1 += 0 + carry should be r2 +=
0 + carry in amd64-64-24k)”

• Carry mispropagation problem exploited in:  
B.B. Brumley and M. Barbosa and D. Page and F. Vercauteren:
Practical realisation and elimination of an ECC-related software bug
attack, CT-RSA 2012 [full paper: https://eprint.iacr.org/2011/633]

18

http://www.skylable.com/blog/2014/05/tweetnacl-carrybit-bug/
http://tweetnacl.cr.yp.to/tweetnacl-20140917.pdf:
https://eprint.iacr.org/2011/633%5D

libgcrypt 1.6.0

commit 246b7aaae1ee459f440260bbc4ec2c01c5dc3362
Author: Werner Koch <wk@gnupg.org>
Date: Fri May 9 12:35:15 2014 +0200

 mpi: Fix a subtle bug setting spurious bits with in mpi_set_bit.

 * mpi/mpi-bit.c (_gcry_mpi_set_bit, _gcry_mpi_set_highbit): Clear
 allocated but not used bits before resizing.
 * tests/t-mpi-bits.c (set_bit_with_resize): New.
 --

 Reported-by: Martin Sewelies.

 This bug is probably with us for many years. Probably due to
 different memory allocation patterns, it did first revealed itself
 with 1.6. It could be the reason for other heisenbugs.

 Signed-off-by: Werner Koch <wk@gnupg.org>

19

mailto:wk@gnupg.org

Potential impact of libgcrypt bug

• Which bug class? Uninitialized variable? No, but close

• Infoleak? Can leak uninitialized data in BigNums

• But! Can also force uninitialized bits to values using
heap primitives

• Predominantly in multithreaded environments

• Exact impact depends on allocator

20

Who uses mpi_sethighbit?

21

/*
 * Generate a random secret exponent K less than Q.
 * Note that ECDSA uses this code also to generate D.
 */
gcry_mpi_t
_gcry_dsa_gen_k (gcry_mpi_t q, int security_level)
{
[…]
 /* Make sure we have the requested number of bits. This code
 looks a bit funny but it is easy to understand if you
 consider that mpi_set_highbit clears all higher bits. We
 don't have a clear_highbit, thus we first set the high bit
 and then clear it again. */
 if (mpi_test_bit (k, nbits-1))
 mpi_set_highbit (k, nbits-1);
 else
 {
 mpi_set_highbit (k, nbits-1);
 mpi_clear_bit (k, nbits-1);
 }
[…]

Looks unexploitable, but more eyes needed here!

Using verification to find bugs
• Unconstrained symbolic execution (proposed by Ramos

& Engler)
• Given: Different implementations of same operation
• If we can prove that they are equivalent:

• all have the same bug
• or all are correct

• Inequivalence:
• Test case demonstrating bug in one of the

implementations
• UC-KLEE not publicly available, but approach easily

reproducible using KLEE for our case
22

Symbolic Execution Challenges

• Assembly code needs to be accurately lifted to LLVM

• Lekkertech has multi-arch lifter, Trail of Bits
published McSema for x86

• Likely needs to support instruction extensions well:
SSE2, AVX2, NEON etc.

• Specific to SAW: LLVM function arguments need to be
integers (very limiting)

23

Galois’ SAW
• Software Analysis Workbench

• Allows program analysis on LLVM bitcode and Java byte code

• Allows (cross-language) equivalence proofs of code

• Leverages symbolic execution

• supports ABC, Boolector, CVC4, MathSAT, Yices, and Z3 as
SMT solvers through SBV (Haskell SBV)

• Written in Haskell, alpha quality  
[cannot handle non-integer arguments for LLVM funcs]

• Code available on GitHub [free for non-commercial use]
24

Alternative: property-based bug hunting

• Arithmetic operations fulfill axioms that can be
checked

• Example: f(f(a)) = a with f(a) = a -1 mod p

• Example: g(a, a) = f(a) with g(a, b) = ab and f(a) = a2

• How to randomly check for many inputs fast?

• Fuzz it!

• “Test harness” causes crash on inequivalence

25

?

?

Fuzzing
• Surprise! afl-fuzz finds BN_sqr bug in x86_64-gcc.c  

in < 18M iterations with 6000 execs/sec  
[less than one Xeon E31275 core hour]  
 
 
 
 
 
 

26

len = read(STDIN_FILENO, buf, 256);
if (len <= 0) exit(1);

a = BN_bin2bn(buf, len, NULL); b = BN_bin2bn(buf, len,
NULL);
r1 = BN_new(); r2 = BN_new();

if (a == NULL || b == NULL) exit(1);

BN_sqr(r1, a, ctx);
/* BN_mul(r2, a, a, ctx) calls BN_sqr() !!! */
BN_mul(r2, a, b, ctx);

/* raise SIGFPE if results differ */
if (BN_cmp(r1, r2) != 0) return 0/0;

Conclusions
• BigNum vulnerabilities are real and can bite you
• Medium-term goal: Formal verification for arithmetic underlying

cryptographic primitives desirable
• Optimized assembly can be significant hurdle

• Instruction set models for x86 (and ARMv7 for the HOL
Theorem Prover exist
• without SSE and other extensions

• Optimization and countermeasures against side-channel attacks
(const-time methods) lead to significantly increased complexity
• more room for bugs

• LibTomCrypt is pretty nice to read (only bug found in last 10
years was in prime generation — failed to iterate Miller-Rabin)

27

Bibliography
• Eli Biham, Yaniv Carmeli, Adi Shamir: Bug Attacks,

Proceedings of CRYPTO 2008, LNCS 5157, Springer,
2008, p. 221-240.

• B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren:
Practical realisation and elimination of an ECC-related
software bug attack, Proceedings of CT-RSA 2012,
LNCS 7178, Springer, 2012, p. 171-186.

• David A. Ramos, Dawson R. Engler: Practical, Low-
Effort Equivalence Verification of Real Code.
Proceedings of CAV 2011, LNCS 6806, Springer,
2011, p. 669-685.

28

