
Breaking Band
reverse engineering and exploiting the shannon

baseband

Nico Golde <nico@comsecuris.com> @iamnion
Daniel Komaromy <daniel@comsecuris.com> @kutyacica

mailto:nico@comsecuris.com?subject=
mailto:daniel@comsecuris.com?subject=

Motivation

• little concrete/reproducible work on analyzing and exploiting cellular basebands

• lots of protocol research: Benoit Michau, Ravi Borgaonkar, SRLabs, Osmocom,..

• everyone keeps talking about this / lots of FUD (hi OSnews!)

• highest payout at mobile pwn2own historically (100-150k$)

All your baseband
belongs to us

Ralf Weinmann

Reverse engineering a
Qualcomm baseband

Guillaume Delugré

2010 2011

Baseband exploitation in
2013

Ralf Weinmann

2013

Cellular exploitation on a
global scale

Mathew Solnik, Mark Blanchou

2014

SMS fuzzing

Charlie Miller
Collin Mulliner
Nico Golde

2009/10 2012 2015

Motivation cont.
• most research focused on

Qualcomm basebands
(AMSS)

• but we worked for
Qualcomm :)

• QC lost significant market
share with release of Samsung
Galaxy S6/Edge

• S6* became pwn2own target

• Shannon: how hard can it be?
this is our story from 0 to 0-day

Talk Structure

• Steps to reverse engineer the RTOS, find vulns,
and write a full RCE exploit

• We try to reconstruct our path, including both
successes and fails

• We release all our custom-built RE tools \o/

Shannon Background
• Samsung's own(?) cellular processor (CP)/modem/baseband implementation

• entire mobile phone stack (2-4G, SIM, IPC with application processor OS, ...)

• not new at all

• Galaxy S5 mini, Galaxy Note 4, various Samsung USB LTE sticks (e.g.
GT-B3740)

• non-Samsung devices

• e.g. some Meizu smartphone models

• … and still used by Samsung!

• most non-US Galaxy S7 devices

Taking a Peek at Firmware
• modem.bin can be obtained from firmware images or

Android RADIO device partition

• No luck on the naive approach:

Identifying Code

• proprietary/undocumented header format

• contains some kind of hash / secure boot

• BOOT: baseband
bootstrap code

• MAIN: baseband code

• NV: non-volatile
memory - likely
baseband settings etc

• OFFSET: unknown

Identifying BOOT Code

• E* often tied to ARM condition codes -> actual code?

Identifying BOOT Code

• looks like sane ARM code!

Identifying MAIN Code

• ~38 MB binary

• no such luck as before, no idea what this is

• Galaxy S6 image the first to feature this

Identifying MAIN Code

• constant high/flat entropy, likely encryption

• no silly xor encryption as far as we can tell
also see http://www.devttys0.com/2013/06/differentiate-encryption-from-compression-using-math/

http://www.devttys0.com/2013/06/differentiate-encryption-from-compression-using-math/

MAIN Code: Remaining
Options

• BOOT: tight copy/replace loops with hardware-assisted
memory mapped-io -> hard

• TEE/TrustZone: Trustlets potentially involved in
decryption -> dead end

• Android kernel/user space involvement (/sbin/cbd):
CP Boot Daemon / Cellular Baseband Daemon
-> dead end

CP Boot Daemon (cbd)

• started at boot:

• parses modem image TOC

• sends modem via SPI* for loading

• kernel driver assistance (see drivers/misc/modem_v1/modem_io_device.c)

• no relevant unpacking/decrypting of image though

 *yo HexRays, we would have appreciated that ARM64 decompiler plugin 6 months earlier ;)

Generating live RAMDUMPs
• cbd/kernel code have code for ramdumps via:

/dev/umts_ramdump0
IOCTL_MODEM_RAMDUMP_START

• can be triggered directly from cbd as root via -o u (test/
ramdump)

UI-based RAMDUMPs
• non-root (as we found later)

*#9090# *#9900#

Interpreting RAMDUMP
• 130mb dump: containing code, but not continuous in

memory -> analysis in IDA will be broken

• cbd<->boot knowledge brought us to ramdump
handler in boot

can nicely translate into an IDA loader!

Reverse Engineering
Shannon

• 130MB ramdump (~38 code)

• ~70k functions

• stripped, but fairly verbose on
strings

• ARM Cortex R7

• Goal:
• identify RTOS primitives
• identify cellular stack layers

(Layer2/3 GSM,UMTS,LTE)
• find way to debug
• find exploitable OTA issues

Sugar-coating MAIN Code

• We got the MAIN code, but:

• significant amount of unidentified code

• tons of strings to make use of

• RTOS identification cumbersome with stock IDA
functionality

• debug capability needed for actual verification

Assisting Function Detection

• IDA's 2 pass analysis is decent, but still misses lots of
functions, confuses code/data segments

• Simple script to find function prologues improves upon
IDA’s results by thousands of functions

• False positives definitely exist, but hurt very little

Making Use of Strings
• ~100k usable strings (common

in basebands due to debug
tools, e.g. Samsung DM)

• state strings

• file paths (hierarchical info)

• function names

• any automatic labeling is
better than sub_*!

Strings->Function Label

identify handlers
with debug info

fatal_error
assert_fatal

free
debug_trace_

function names
file names

path info (module)

"exact" strings

sanitize remaining
strings

> 5 chars
alphanumeric
consonants

vowels

"fuzzy/misc" strings

Applying Labels
• For each function:

• calls known API? -> trace back arguments -> label

• part of known directory structure? -> sanitize path -> partial label

• contains file name -> sanitize file -> sub module / partial label

• uses only fuzzy string? -> label

• reuse names for labeling callers of these functions -> "calls_..."

• rinse and repeat every now and then

IDApython yields
~20k named

functions

RTOS Primitive Identification
• In ARM, lot of RTOS

primitives are
implemented via
system control co-
processor instructions
(MCR/MRC)

• IDA doesn’t parse
these

• scripted MCR
annotation: ARM R7,
ARM9, and ARM11

RTOS Baseline
• What privilege level are we running at?

• How to find/enumerate the tasks of the OS?

• How are tasks handled in this OS? Start-up,
communication, separation?

• Memory management of tasks (heaps&stacks, MMU/
MPU)?

• How to identify most interesting tasks (3GPP Layer3
components doing message (IE) parsing)?

Execution Mode

• Expected: typical OS with kernel+user space: many
SVC calls in user-space code, complex SVC handlers
and RETs in kernel code.

• Few SVC handlers implemented, mostly ramdumping
and resets

• System registers indicate supervisor

• Preliminary conclusion*: all supervisor, all the time :)

* ultimately verified by issuing privileged instructions once we had RCE

Task Identification
• tasks in ramdump make use of their stack

frames

• find stacks in ramdump by stackframe
analysis

• heuristic of a stack: dword == instr+1, instr
follows a BL

• backtrace frames —> common task init
function —> initialization routine fills in task
struct, kept on linked lists

• taskscan.py walks linked list structure: #101
tasks

Task Message Queuing

RTOS Memory Management
• Task stacks:

• found easily from task structs

• static locations, always packed one after the other. Each
stackframe’s top includes two DEADBEEF markers.

• Heaps:

• y = malloc(x); memcpy(y, z, x) is a very frequent pattern.
relatively easy to spot. free, realloc found from there

• custom implementation. tl;dr: slot-based allocator for
various sizes, with look-aside doubly-linked free lists

Memory Configuration/*PU?
• The ARM R7 has an MPU only (no MMU).

• MPU configured via MCR instructions; reuse scripting

• This yields a static struct in memory -> get segment
permission values. Wrote another script to automate all
that.

• Result: we know the permissions and type of every
segment precisely now.

main code regions start@0x04000000 and 0x40000000

Memory Management

Debugging Crashes
• screen shows crash information,

including crash type. mildly
useful.

• found register map structure in
memory

• following the interrupt vector/
exception table we got really
lucky here

• exception handling fills global
register map

Debugging Crashes
• screen shows crash information,

including crash type. mildly
useful.

• found register map structure in
memory

• following the interrupt vector/
exception table we got really
lucky here

• exception handling fills global
register map

almost proper
crash debugging

Live Debugging
• SVE-2016-5301* mentioned

ability to unlock device via AT
command

• AT command situation far worse
than what authors released! (try
AT+CLAC)

• modem read/write memory via
AT commands among other
things

• could also build a full debugger
now… but we skipped that

*Roberto Paleari and Aristide

Vulnerability Hunting
• implementation errors,

exploitable memory
corruptions

• "higher-level" involving
parsing of messages we
can send from a fake
BTS/network

• NAS most fruitful, RRC
short signaling messages

Vulnerability Hunting / NAS
(non-GPRS)

• NAS responsibilities:

• Mobility Management (MM)

• Radio Resource Management (RR)

• Connection Management

• CM parses/processes/establishes

• calls (CC)

• short messages (SMS)

• USSD (SS)

• messages chain Information Elements (IEs)

• IE represents LV/TLV (0-255) and LV-E/
TLV-E (0-65535)

*also see 3GPP TS 24.007/24.008

MM

RR

CM

simplified LTE Layer 3

CC SMS SM SS

Vulnerability Hunting / NAS
(non-GPRS)

• two approaches:

• try to associate spec understanding with collected strings / IE parsing

• identify message processing in L3 stack

• Example L3/Call Control (CC) task loop:

• dequeue message

• CC_process_msg() -> parse IEs -> trigger callback (-> generate OTA
response)

• free message

*also see 3GPP TS 24.007/24.008

CC_process_msg()
• CC_process_msg() operates on raw OTA Layer 3 message

• calls central parse_IEs():

• parses IEs based on global IE definition arrays (type, IEI, min_size, size)

• encapsulates messages into IE representation array <V_ptr; LI; is_present>

• dispatches handler from global array based on message id (useful for exploitation as well!)

• handlers work on IE representation array content

id
fptr
log str

CC_process_msg()
• 3GPP spec -> actual handler is trivial

• message ids are not 3GPP ids, but

• everything that contains "<RADIO MSG>" is one essentially

Finding Exploitable Bugs
• At this point we know:

• all OTA handlers

• structure of incoming payloads; tainted values (payload,len with the constraints)

• Further vulnerability hunting options:

• manual handler analysis and IDA scripting, looking for tainted length in
memcpy etc.

• bjoern, decompiler+joern, ...

• Can't estimate how "buggy" this code is: we found a winner quickly, weren't forced to
do more vuln hunting

So you want to fuzz
basebands?

• We don't recommend OTA live fuzzing at all!

• Researchers developed fuzzers and found bugs, but:

• basebands are more fragile than you think: hangs and weird
behavior are normal during test

• often implement spec loosely or only subset

• state machines are complex, especially in error/repetition cases

• a significant amount of corruptions do not result in good crashes

Example CVE-2015-8546

Example CVE-2015-8546

Example CVE-2015-8546

Example CVE-2015-8546
CC_decodeProgressInd

literally a text book stack-based buffer overflow over-the-air!

DEMO

Exploitation / Setup
• OpenBSC provides FOSS network stack (GSM)

• stuff messages into gsm48_conn_sendmsg()

• many options for Base Transceiver Station (BTS) side:

• nanoBTS,

• sysmoBTS

• SDR (USRP,..)

• ...

• <500 $

Exploit Mitigations
• Existing mitigations/stability improvements

• stack overflows are checked (verifies the deadbeef markers during task scheduling switches)

• heap guard words exist

• R7 supports XN and is configured for certain regions by the MPU

• Lack of baseline mitigations

• stack/heap guards static, no heap hardening (safe unlinking, ...)

• no stack canaries

• no randomization / static unprotected function pointers

• Broken mitigations:

• the XN region configuration is broken/incomplete: e.g. stack/heap not one of them

Exploit Primitives
• Content at static or less fluctuant address (some):

• short-term subscriber identity/TMSI -> known dword

• network name (long/short) -> alphanumeric ARM shellcode (also uncached!)

• Payload size restrictions: bypass via staged CC/L3 handler hooking

• Clean state returns: L3 state machines are simple loops -> jump to the
beginning automatically processes next message (assuming registers are setup
correctly)

• Persistence: clean return survives flight mode toggle; potential path for real
persistence may exist (e.g. exploiting nv item parsing issues etc.)

Exploit Payloads
• baseband code execution has limited functionality

• not the master over application processor/memory (these days), but
loaded by apps processor! (pls get this right in public debates)

• baseband sees all* data/signaling exchanged with cellular networks
though (calls, text messages, data)

• typical payloads would alter/eavesdrop/inject/drop these

• for our demo we have chosen to reroute calls (e.g. for MitM): simple
payload that changes signaling data (<100 bytes); implanted via
patching callback code

* that's why you should use E2E crypto!

Exploitation Fails
• Caching

• making RX code RWX via MPU config works …but actual patching works unreliably;
somehow cache flushing MCRs don't work as expected (maybe LLI related?)

• eventually went for patching data, not code

• Dual-Sim code snafus

• almost the entire L3 code is duplicated in the firmware, with “DS_” labels added to
names

• we suspect this is a primitive dual-sim support implementation.

• tl;dr: verify bindiff results with care when upgrading firmware versions!

Application Processor
Escalation

• modifying application processor data traffic:

• inject JS into HTML or relay traffic to attacker controlled site -> browser pwn or exploit an
unsecured update process (e.g. SwiftKey Keyboard, …)

• IPC channels:

• shared memory IPC implementation (parsing, range checking, ..)

• DMA capable peripherals (data moving)

• services built on top of this (e.g. RILD*)

• IPC/LLI message debugging on Android via /d/svnet/mem_dump

• full baseband<->apps IPC traces, including your seen networks, called numbers, etc

• yes, this is available to unprivileged applications on Galaxy devices!

* the old remoteFS directory traversal bug discussed by Replicant seems fixed ;)

Final Remarks
• 2 people / part time effort; 3-6 months

• basebands are also "just" embedded systems, no
mad ninja skills required

• still a lot of space for research, especially on
exploitation:

• target identification (device/firmware)

• application processor escalation

Tools Release
• github.com/comsecuris/shannon (release imminent :)

• 010 Editor templates

• IDA loaders

• RAMDUMP scripts

• idapython: scanning tasks, naming functions, MPU
configuration, register dumps, read/write memory,
unpack modem binaries, naming of message handlers
etc.

https://github.com/comsecuris/shannon

Questions

?
contact@comsecuris.com

mailto:contact@comsecuris.com

Backup - Relaying of Calls /
Impact

• Essentially enables interception/MitM of calls

• Attacker would just need to know original number to initiate new call
and proxy

• Options:

• append original number to caller and extract on attacker side

• 3GPP provides "called party subaddress" field to denote extensions

• no visible behavior difference from user side (network can see this
though)

